BIOSCIENCE IN THE 21ST CENTURY

Introduction to Bioinformatics

Dan Lopresti Associate Professor Office PL 404B dal9@lehigh.edu

Motivation

"Biology easily has 500 years of exciting problems to work on." Donald Knuth (Stanford Professor & famous computer scientist)

By developing techniques for analyzing sequence data and related structures, we can attempt to understand molecular basis of life.

http://cmgm.stanford.edu/biochem218/

Before We Get Going

Recall your recent lectures by Professors Marzillier and Ware who presented biological background:

Today I'll focus on the related computational questions.

Computer Science and Engineering Computer Science and Engineering Computer Science and Engineering

Bioinformatics

What is bioinformatics?Application of techniques from computer
science to problems from biology.

Computer	Science	
	Bioinformatics	
	Biolo	ogy

Why is it interesting?

- Important problems.
- Massive quantities of data.
- Desperate need for efficient solutions.
- Success is rewarded.

Data Explosion

Our genetic identity is encoded in long molecules made up of four basic units, the nucleic acids:

- (1) Adenine,
- (2) Cytosine,
- (3) Guanine,
- (4) *Thymine*.

To first approximation, DNA is a language over a four character alphabet, $\{A, C, G, T\}$.

http://www.ncbi.nlm.nih.gov/Genbank/genbankstats.html

Computer Science and Engineering Computer Science and Engineering Computer Science and Engineering Computer Science and Engineering

Genomes

Complete set of chromosomes that determines an organism is

known as its genome.	GenBank Release 12	21.0 — December 15, 2000		
	Species	Haploid genome size	Bases	Entries
Us ——	Homo sapiens	3,400,000,000	6,702,881,570	3,918,724
	Mus musculus	3,454,200,000	1,291,602,139	2,456,194
	Drosophila melanog	aster 180,000,000	487,561,384	166,554
	Arabidopsis thaliana	100,000,000	242,674,129	181,388
North The State of	Caenorhabditis elega	ans 100,000,000	203,544,197	114,553
Poaceae	Tetraodon nigrovirio	lis 350.000.000	165 530 271	188,993
	Oryza sativa		•	1,411
	Rattus norvegicus	Conclusion:	size	8,598
	Bos taurus	1		9,473
Mug mugaulug	Glycine max	does <u>not</u> ma	tter!	1,802
ivius musculus	Medicago truncatula			4,535
	Trypanosoma bruce	(But you alr	eadv	1,334
	Lycopersicon escule	(Dut you un	Cuuy	7,112
	Giardia intestinalis	knew this (4,328
Zea mays	Strongylocentrotus			7,532
Zea mays	Entamoeba histolyti			9,938
🔨 🔨	Hordeum vulgare	<u>27 -</u> 20	44,489,692	57,779
	Danio rerio	1,900,000,000	40,906,902	83,726
	Zea mays	5,000,000,000	36,885,212	77,506
http://www.cbs.dtu.dk/databases/DOGS/	Saccharomyces cere	visiae 12,067,280	32,779,082	18,361
http://www.nsrl.ttu.edu/tmot1/mus_musc.htm http://www.oardc.obio-state.edu/seedid/single.asp?strID=324				

Comparative Genomics

Recall this amazing diagram from Professor Ware's lecture:

How did we decipher these relationships?

http://www.ornl.gov/sci/techresources/Human_Genome/graphics/slides/ttmousehuman.shtml

Algorithms are Central

An *algorithm* is a precisely-specified series of steps to solve a particular problem of interest.

- Develop model(s) for task at hand.
- Study inherent computational complexity:
 - Can task be phrased as an optimization problem?
 - If so, can it be solved efficiently? Speed, memory, etc.
 - If we can't find a good algorithm, can we prove task is "hard"?
 - If known to be hard, is there approximation algorithm (one that works at least some of the time or comes close to optimal)?
- Conduct experimental evaluations (perhaps iterate above steps).

Sequence Nature of Biology

Macromolecules are chains of simpler molecules.

In the case of proteins, these basic building blocks are *amino acids*.

In DNA and RNA, they are nucleotides.

Computer Science and Engineering

Computer Science

NCBI GenBank

National Center for **Biotechnology Information** (NCBI), which is branch of National Library of Medicine (NLM), which is branch of National Institutes of Health (NIH), maintains GenBank, a worldwide repository of genetic sequence data (all publicly available DNA sequences).

🗿 NCBI Seque	ence Viewer -	Microsoft Inter	net Explorer				
<u>Eile E</u> dit <u>V</u> ie	ew F <u>a</u> vorites	<u>T</u> ools <u>H</u> elp					11
🌀 Back 🔹	🛇 · 🖹 🛛	3 🟠 🔎	Search 📌 Fav	orites 🚱 🕻	3- 🕹 🖂	🛄 🚳	
Address 🙆 http	o://www.ncbi.nlm.	nih.gov/entrez/vie	wer.fcgi?val=5278	3855&itemID=419	17&view=gbwithpa	rts 🛛 💌 🔁 Go	Links »
		/db_xref="(GeneID: <u>3098</u> 3	<u>339</u> "			^
		/translatio	on="MKNISDL	MQALGQIEKKI	SKPSFETWMK:	STKAHSLQGDTLIIT	
		APNEFARDULE	ESRYLHLIADT:	IYDLTGEELSI	KFVIPQNQNEEI	FMPKSPIKKMSKEE	
		PADFPQNMLNE	PKYTFDTFVIG	SGNRFAHAASL.	AVAE AP AKAYNI	PLFIYGGVGLGKTHL	
		MHAIGHYVIDH	INPSAKVVYLS:	SEKFTNEFINS:	IRDNKAVDFRNI	RYRNVDVLLIDDIQF	
		LAGKEQTQEER	FHTFNTLHEE	FKQIVISSDRPI	PKEIPTLEDRL	RSRFEWGLITDITPP	
		DLETRIAILRE	KKAKAEGLDIPI	VEVMLYIANQII	SNIRELEGAL:	IRVVAYSSL INKD IN	
		ADLAAEALKDI	LIPSSKPKVIT:	IKDIQRIVGQQI	NIKLEDFKAKI	KRTKSVAFPRQIAMY	
Constant of the American Provider		LSREMTDSSLE	PKIGEEFGGRDI	HTTVIHAHEKI:	SKLLSDDEQLQ	QQIKEIKEQLR"	
ORIGIN							
1	atgaaaaaca	tatcggatct	ttggaatcaa	getttggggge	agatcgaaaa	aaaattgagc	
61	aagcccagct	ttgaaacatg	gatgaaatcg	acaaaggccc	attcattgca	gggcgatacg	
121	ctgatcatca	ccgcaccgaa	cgagttcgcc	agagactggc	ttgaatcaag	atacctgcac	
181	ctgatcgccg	atacgatcta	tgatctgaca	ggagaagaat	tgagcattaa	atttgtcatt	
241	cctcagaatc	aaaatgaaga	agattttatg	ccaaagtete	caatcaaaaa	aatgtcgaaa	
301	gaagaaccgg	ctgattttcc	gcaaaacatg	ctgaatccca	aatatacatt	tgatacgttc	
361	gttatcggtt	caggaaaccg	attegeceae	gcagcgtctt	tggcagtggc	tgaagccccg	
421	gcgaaagctt	acaatccgct	gtttatttac	ggggggagtcg	gacttggaaa	gactcactta	
481	atgcatgcga	tcgggcacta	tgtcatcgat	cacaatccat	ctgcaaaagt	ggtttatttg	
541	tcatctgaga	aatttacaaa	tgagttcatt	aactcgatcc	gtgacaataa	agetgtegat	1000
601	tttcgcaatc	gctatcgaaa	tgttgacgtt	cttttaatag	acgatattca	attttagcc	
661	ggaaaagaac	agacgcaaga	ggaatttttc	catacgttta	atacgetgea	tgaagaaaca	
721	aagcagattg	tcatttccag	cgaccggcct	ccaaaagaga	tcccaacgct	tgaagaccgt	
781	ttgegeteee	gttttgaatg	gggattgatc	actgacatca	cgcctcctga	tctggaaaca	

Massive quantities of sequence data \Rightarrow *need for good computational techniques.*

1321 attaaagagc agctgagata a			
<			>
Done		Internet	

http://www.ncbi.nlm.nih.gov/

Reading DNA

Recall Professor Marzillier's lecture:

http://www.apelex.fr/anglais/applications/sommaire2/sanger.htm http://www.iupui.edu/~wellsctr/MMIA/htm/animations.htm *Gel electrophoresis* is process of separating a mixture of molecules in a gel media by application of an electric field.

In general, DNA molecules with similar lengths will migrate same distance.

Make DNA fragments that end at each base: *A*, *C*, *G*, *T*. Then run gel and read off sequence: *ATCGTG* ...

Reading DNA

Original sequence: ATCGTGTCGATAGCGCT

Computer Science and En Computer Science and

Sequencing a Genome

Most genomes are enormous (e.g., 10^{10} base pairs in case of human). Current sequencing technology, on the other hand, only allows biologists to determine ~ 10^3 base pairs at a time.

This leads to some very interesting problems in bioinformatics ...

Computer Science and Engineering

Computer Science a

Sequencing a Genome

Genomes can also be determined using a technique known as *shotgun sequencing*.

Computer scientists have played an important role in developing algorithms for assembling such data.

It's kind of like putting together a jigsaw puzzle with millions of pieces (a lot of which are "blue sky").

 $http://occawlonline.pearsoned.com/bookbind/pubbooks/bc_mcampbell_genomics_1/medialib/method/shotgun.html$

Computer Science and Engineering Computer Science and Engineering Computer Science and Engineering Computer Science and Engineering

Computer Scien

A simple model of DNA assembly is the *Shortest Supersequence Problem*: given a set of sequences, find the shortest sequence *S* such that each of original sequences appears as subsequence of *S*.

Look for overlap between *prefix* of one sequence and *suffix* of another:

--ACCGT--

- ----CGTGC
- TTAC----

TTACCGTGC

Sketch of algorithm:

- Create an *overlap graph* in which every node represents a fragment and edges indicate overlap.
- Determine which overlaps will be used in the final assembly: find an *optimal spanning forest* in overlap graph.
 - W = AGTATTGGCAATC
 - Z = AATCGATG
 - U = ATGCAAACCT
 - X = CCTTTTGG
 - Y = TTGGCAATCA
 - S = AATCAGG

Computer Science and Engineering

Computer Science a Computer Science

- Look for paths of maximum weight: use greedy algorithm to select edge with highest weight at every step.
- Selected edge must connect nodes with in- and out-degrees <= 1.
- May end up with set of paths: each corresponds to a contig.

What's the problem? Google for biologists ...

- Given new DNA or protein sequence, biologist will want to search databases of known sequences to look for anything similar.
- Sequence similarity can provide clues about function and evolutionary relationships.
- Databases such as GenBank are far too large to search manually. To search them efficiently, we need an algorithm.

Shouldn't expect exact matches (so it's not really like google):

- Genomes aren't static: mutations, insertions, deletions.
- Human (and machine) error in reading sequencing gels.

Genomes Aren't Static

Sequence comparison must account for such effects.

http://www.accessexcellence.org/AB/GG/nhgri_PDFs/deletion.pdf

http://www.accessexcellence.org/AB/GG/nhgri_PDFs/insertion.pdf

Genomes Aren't Static

Different kinds of mutations can arise during DNA replication:

http://www.accessexcellence.org/AB/GG/mutation.htm

The Human Factor

In addition, errors can arise during the sequencing process:

"...the error rate is generally less than 1% over the first 650 bases and then rises significantly over the remaining sequence."

http://genome.med.harvard.edu/dnaseq.html

A hard-to-read gel (arrow marks location where bands of similar intensity appear in two different lanes):

http://hshgp.genome.washington.edu/teacher_resources/99-studentDNASequencingModule.pdf

Why not just line up sequences and count matches?

Doesn't work well in case of deletions or insertions:

Computer Science and Engineering Computer Science and Engineering Computer Science and Engineering Computer Science and Engineering

Instead, we'll use a technique known as dynamic programming.

- Model allows three basic operations: delete a single symbol, insert a single symbol, substitute one symbol for another.
- Goal: given two sequences, find the shortest series of operations needed to transform one into the other.

Computer Science and Engineering

Computer Science a

How can we determine optimal series of operations?

- Approach is to build up longer solutions from previously computed shorter solutions.
- Say we want to compute solution at index *i* in first sequence and index *j* in second sequence:

So, best way to do this comparison:

Is best choice from following three cases:

Normally, this computation builds a table of distance values:

By keeping track of optimal decision, we can determine operations:

Genome Rearrangements

Recall what we saw earlier:

- 99% of mouse genes have homologues in human genome.
- 96% of mouse genes are in same relative location to one another.
- Mouse genome can be broken up into 300 *synteny blocks* which, when rearranged, yield human genome.
- Provides a way to think about evolutionary relationships.

Reversal Distance

Human Chromosome X

Mouse Chromosome X

Reversal distance is the minimum number of such steps needed.

Interesting Sidenote

Early work on a related problem, sorting by prefix reversals, was performed in 1970's by Christos Papadimitriou, a famous computer scientist now at UC Berkeley, and one "William H. Gates" ...

Abstract

For a permutation σ of the integers from 1 to n, let $f(\sigma)$ be the smallest number of prefix reversals that will transform σ to the identity permutation, and let f(n) be the largest such $f(\sigma)$ for all σ in (the symmetric group) S_n . We show that $f(n) \leq (5n+5)/3$, and that $f(n) \geq 17n/16$ for n a multiple of 16. If, furthermore, each integer is required to participate in an even number of reversed prefixes, the corresponding function g(n) is shown to obey $3n/2-1\leq g(n)\leq 2n+3$. Help is Available

Yes, that Bill Gates ...

History of Chromosome X

Computer Science and En Computer Science and

Waardenburg's Syndrome

Mouse provides insight into human genetic disorder:

- Waardenburg's syndrome is characterized by pigmentary dysphasia.
- Disease gene linked to Chromosome 2, but not clear where it was located.

"Splotch" mice:

- A breed of mice (with splotch gene) had similar symptoms.
- Scientists succeeded in identifying location of gene in mice.
- This gave clues as to where same gene is located in humans.

Building the "Tree of Life"

Scientists build phylogenetic trees in an attempt to understand evolutionary relationships. Reversal distance is often used here.

Note: these trees are "best guesses" and certainly contain some errors!

Computer Science and Engineering

Computer Science

DNA Microarrays

- Allows simultaneous measurement of the level of transcription for every gene in a genome (gene expression).
- Differential expression, changes over time.
- Single microarray can test ~10k genes.
- Data obtained faster than can be processed.
- Want to find genes that behave similarly.
- A pattern discovery problem.

green = repressed red = induced

Computer Science and Engineering

Computer Science

Using DNA Microarrays

- Track sample over a period of time to see gene expression over time.
- Track two different samples under same conditions to see difference in gene expressions.

Each box represents one gene's expression over time

http://www.bioalgorithms.info/presentations/Ch10_Clustering.ppt

DNA Microarrays

K-means clustering is one way to organize this data:

- Given set of *n* data points and an integer *k*.
- We want to find set of *k* points that minimizes the mean-squared distance from each data point to its nearest cluster center.

Sketch of algorithm:

- Choose *k* initial center points randomly and cluster data.
- Calculate new centers for each cluster using points in cluster.
- Re-cluster all data using new center points.
- Repeat second two steps until no data points are moved from one cluster to another or some other convergence criterion is met.

Clustering Microarray Data

0

 \mathbf{O}

0

0

- Pick k = 2 centers at random.
- Cluster data around these center points.

• Re-calculate centers based on current clusters.

From "Data Analysis Tools for DNA Microarrays" by Sorin Draghici.

Clustering Microarray Data

0

• Re-cluster data around new center points.

• Repeat last two steps until no more data points are moved into a different cluster.

From "Data Analysis Tools for DNA Microarrays" by Sorin Draghici.

Example of Hierarchical Clustering

From "Cluster analysis and display of genome-wide expression patterns" by Eisen, Spellman, Brown, and Botstein, Proc. Natl. Acad. Sci. USA, Vol. 95, pp. 14863–14868, December 1998

Computer Science and Engineering

Computer Science a Computer Science

Why Study Bioinformatics?

- Still many urgent open problems ⇒ lots of opportunities to make fundamental contributions (and become rich and famous).
- Stretch your creativity and problem-solving skills to the limit.
- Join a cross-disciplinary team work with interesting people.
- Participate in unlocking the mysteries of life itself.
- Make the world a better place.

CSE Course in Bioinformatics

In CSE 308, we cover:

- Intro to molecular biology & algorithms,
- Basic programming for bioinformatics,
- Genetic sequence comparison & alignment,
- Physical mapping, sequencing, and assembly of DNA,
- Standard formats and sources for genomic data,
- Advanced topics: DNA microarrays, genome rearrangements, RNA and protein structure prediction, etc.

Materials @ http://www.cse.lehigh.edu/~lopresti/courses.html Questions: dal9@lehigh.edu

CSE 308 is <u>not</u> a programming course!

BIOSCIENCE IN THE 21ST CENTURY

Thank you!

